If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+50t+2
We move all terms to the left:
0-(-16t^2+50t+2)=0
We add all the numbers together, and all the variables
-(-16t^2+50t+2)=0
We get rid of parentheses
16t^2-50t-2=0
a = 16; b = -50; c = -2;
Δ = b2-4ac
Δ = -502-4·16·(-2)
Δ = 2628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2628}=\sqrt{36*73}=\sqrt{36}*\sqrt{73}=6\sqrt{73}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-6\sqrt{73}}{2*16}=\frac{50-6\sqrt{73}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+6\sqrt{73}}{2*16}=\frac{50+6\sqrt{73}}{32} $
| 2x+1=13x/3 | | -8=9c=19 | | 4+x=2x-4 | | 3x^2+13=883 | | 6y+7=135 | | 24x+1=145 | | 2x+7=132+x | | 3/2x+3+4=4x-5/2x=7 | | 4x+6x+3=73 | | 3(17)-4=7y-20 | | 32x-26x=15 | | 2t/5=10/3 | | 42=41x+1 | | x=35(x) | | 15+2(x-3)=23 | | 5x+1=127 | | 10x-10+9x=180 | | 6(5-8v)+12×=-54 | | 6(5-8v)+1×=-54 | | 2(3w-5)=14 | | 3x–2=2x+3 | | 9+-9w=12+6w | | p+4=25 | | 9+9w=12+6w | | 9+-9=12+6w | | 117=10y-3 | | (x^2+3x)/3=2x | | 28×2+2w=84 | | M/m-1+22/m^2-1=13/m+1 | | 3/5+2/3x=2/15 | | 3p/2+6=15 | | 49x-2=48x+1 |